
Compositional Impact on Science & Engineering 
in Atmospheres

Compositional Impact on Science & Engineering 
in Atmospheres

IPPW-5 Short Course:  Controlled Entry & Descent into Planetary Atmospheres
Bordeaux, France

June 23, 2007

Thomas R. Spilker

Jet Propulsion Laboratory



Organization

• Compositional effects on the atmosphere itself
• Compositional effects on science measurements
• Compositional effects on entry systems
• Compositional effects on descent systems

•Compositional effects on communications



Effects on the Atmosphere

Atmospheric Structure
• Mean molecular mass M is a parameter of fundamental importance

– Strictly a function of composition
• Atmospheric density ρ is proportional to M

– All aerodynamic drag calculations depend on density:  Fd = (Cd/2) A ρ V2

• Scale height H is a function of M
– Describes the local vertical gradient of pressure or density

P(z) = P(zo) exp[-(z- zo)/H] (“Isothermal atmosphere”)
– In real atmospheres H can vary from a few km to ~100 km
– Values of H in the relevant density range are critical to entry trajectory design

• Lapse rate (dT/dz) is important to structure and dynamics (esp. convection)
– Multiple mechanisms for composition to affect lapse rate

Condensation and its latent heat (dry vs. wet adiabats)
Opacity to radiant energy

– Sunlight going downward
– Thermal emissions going upward
– Greenhouse effect

 
H =

RT
Mg



Effects on Science Measurements

• Chemical aliasing
– Can bias compositional measurements

One species’ instrument response behaves like another
– Instrument response can be misinterpreted, or...
– One species’ signal overwhelms the other’s

– Example: CO and N2 in a low- to med-resolution mass spectrometer

• Condensation
– Liquids or fine solids in instrument systems

Interfere with moving parts
Sampling systems

– Example: H2SO4 droplet plugging inlet to Pioneer Venus Large Probe mass spectrometer
– Clouds, hazes

Interfere with imaging, other instruments requiring light propagation
Aerodynamics can generate local “clouds”

– Effect commonly demonstrated above wings of aircraft in humid air
– Can fool nephelometers



Direct Effects on Entry Systems
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• Two heating mechanisms:  convective & radiative
– Air hitting the shock is compressed and heated tremendously;  it

moves (convects) into contact with the TPS and transfers the heat to 
the TPS

– Air heated at the shock radiates at the TPS; the shock radiative 
spectrum is strongly influenced by composition of the air

Ex:  Titan’s atmosphere is mostly N2 but also contains CH4: 
dissociated N and C form CN, a strong violet-UV radiator

– Convective/radiative balance is a result of a complex interplay of 
Mach number and composition

• Two cooling mechanisms:  ablative & radiative
– Ablation:  heated TPS material vaporizes and convects away with 

flowing air, carrying with it stored chemical energy, latent heat of 
sublimation, and thermal energy of higher temperature

– Radiation:  heated TPS material radiates energy away; but if the
shock is strong, it may be opaque and absorb the outgoing radiation, 
reradiating some of it back at the TPS

• Radiative spectrum and heat deposition depth
– In an ablative TPS, radiant heating at the surface yields a thermal 

profile that produces no interior cracking
– Heat deposited at depth causes higher thermal gradients at depth and 

cracking (spalling), decreasing TPS effectiveness

Temp
increase
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Don’t forget chemical reactions!



Direct Effects on Descent Systems

Shock

• Effectiveness of parachute systems
– Drag produced per unit area is directly proportional to atmospheric density

• Condensation
– Polar liquids (ex. water) or solutions (ex. ammonia in water) can coat surfaces

• Corrosion
– Some atmospheric constituents can be quite corrosive

Example:  H2SO4 in Venus’ atmosphere at altitudes of ~30-70 km
– Components likely to be sensitive:

Parachute systems: canopy, lines, swivels
Exposed fine wires
Instrument sensors



Effects on Communications



Communications: the Data Relay Problem

• A probe at some level within a 
planetary atmosphere ...
• ... must send a given volume of 

data in a given time (thus, at a 
known data rate) ...
• ... through the intervening 

atmosphere (and possibly other 
non-vacuum media) ...
• ... over some distance ...
• ... to a receiving station outside the 

atmosphere.
• How much does the atmosphere 

attenuate the data relay radio 
signal?

Layers of
Planetary

Atmosphere

Knowing this is critical to 
designing a successful telecom 

system !



General Telemetry Systems & Loss Terms
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It all boils down to S/N!



Telemetry Rate Estimates

• Approximation for a system’s maximum data rate:
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π
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Pt:  transmitter power Gt:  transmitting antenna gain
Dr:  receiving aperture diameter r:  distance between antennas
ξ :  loss terms (e.g., signal absorption or scattering, antenna losses)
Ro:  constant (approximately) of proportionality depending on the receiving system’s 

performance, coding schemes, noise, etc.
Distance r attenuates radio signals through “spherical divergence”



Radio Propagation Effects

Attenuation by Refractive Scattering
• Scattering changes the propagation direction of an EM wave
• Redirection of RF energy away from the antenna beam
• Due mostly to refractive inhomogeneities in atmospheres

– Gases:  Temperature variations, turbulence
– Liquids:  Cloud droplets and local concentrations
– Solids:  Ice cloud particles and local concentrations

• Can also occur in planetary and interplanetary plasmas

Attenuation by Refractive Beam Spreading
• Bending of a refracted ray increases as the 

angle of incidence increases
– “Bottom” of an antenna beam bends more than 

the “top”
– Beam becomes elongated, spreads the energy 

over a larger area:  attenuation
– Important only at large zenith angles

BWr

BWi BWi < BWr



Radio Propagation Effects

Attenuation by Absorption
• Characterized by the absorption coefficient α

– Units of Optical Depths or dB (some logarithmic unit) per unit length
– Many influences: concentration of absorbers, T, P’s of other gases, radio frequency

• Many constituents of planetary atmospheres can absorb RF energy
– Gases:  ammonia, water, hydrogen sulfide, phosphine, sulfuric acid
– Liquids:  water, water-ammonia solutions, sulfuric acid
– Solids:  water, ammonia, NH4SH
– Collisional plasmas
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• Absorption Spectrum:  absorption coefficient vs (radio) frequency
– Liquids:  usually have non-resonant “Debye” spectra

Absorption coefficient of a given sample is proportional to f2
– Polar gases (permanent dipole moment):  very complex behavior, especially ammonia

Discrete transitions within coupled rotational-vibrational states (and other transitions) generate 
many absorption lines in the microwave through sub-mm-wave range
Pressure broadening increases line widths so they overlap, creating a continuum spectrum
Extreme pressure broadening produces a quasi-Debye spectrum, and can broaden powerful IR 
absorption lines into the RF portion of the spectrum

– Non-polar gases: Only collision-induced dipole moment, weak Debye spectrum (CO2, H2)



Radio Propagation Effects

Attenuation by Absorption in a Gas:  Ammonia
Line spectrum Pressure broadened Near-Debye
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Example Opacity Estimate:  Jupiter

• Telecom system engineers for JPL’s “Team X” designed a probe 
data relay system for Jupiter deep probes
– Designed for relay distance of ~200,000 km
– PERFORMANCE:

It could maintain a data rate of 10 bits/s (minimum supportable) with up to

24.5 dB
of atmospheric attenuation

Question:  How deep in Jupiter’s atmosphere can it still maintain the link?



Example Opacity Estimate:  Jupiter
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Example Opacity Estimate:  Jupiter
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Questions?
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